
Martin R. Stytz, Ph.D.
Sheila B. Banks, Ph.D.
Larry J. Hutson
Eugene Santos, Jr., Ph.D.
Virtual Environments Laboratory
Artificial Intelligence Laboratory
Wright-Patterson AFB, OH 45433
mstytz@afit.af.mil
mstytz@acm.org
sbanks@afit.af.mil

An Architecture to Support Large
Numbers of Computer-Generated
Actors for Distributed Virtual
Environments

Abstract

A variety of challenges exist in the design of systems that can be used to host a wide
variety of computer-generated actors (CGAs) that possess believable behaviors. The
challenges arise in the areas of system architecture and design, knowledge-base design,
decision-making mechanisms, and the distributed virtual environment (DVE) network
interface. These challenges are especially significant if the DVE is to be used for train-
ing, because accurate training is essential to the ready application of training experi-
ence to real-world situations. The project described in this paper was undertaken to
improve the quality of threat CGAs in DVEs utilized for aircrew training. In this paper,
we describe the system and the reasons for its genesis. We present the system re-
quirements, system architecture, component-wise decomposition of the system de-
sign, and structure of the major components of the decision mechanism. We conclude
with a summary of our results to date and recommendations for further research.

1 Introduction

The Joint Synthetic Battlespace (JSB) proposed within the Department of
Defense Modeling and Simulation Master Plan (available at http://www.dmso.
mil) requires a distributed virtual environment (DVE) wide consistent threat
environment to achieve a useful mission rehearsal, training, and test and evalua-
tion capability. One of the obstacles to achieving large-scale, complex distrib-
uted virtual environments is the difficulty and expense involved in inserting
large numbers of believable actors into the DVE. Human-controlled actors are
costly in terms of both hardware and human time due to the large numbers of
human operators required to control actors in the DVE at run-time. However,
little relief to these problems has been forthcoming. To date, computer-gener-
ated actor (CGA) systems have proven to be expensive to implement, expensive
and challenging to modify, and lacking in realistic behaviors. Because the De-
partment of Defense is moving toward the use of Distributed Mission Training
(DMT) for aircrew training, approaches to mitigate the costs associated with
current CGA implementations are needed. A more-flexible CGA architecture
designed for training needs, cost containment, and software modification is
needed. For CGAs to be useful in training, they must exhibit a broad range of
skills, display competency and realism in their behaviors, and comply with cur-
rent doctrine. To minimize costs, a single computer host should insert a num-
ber of CGAs of various types into the environment and coordinate the activities

Presence, Vol. 7, No. 6, December 1998, 588–616

r 1998 by the Massachusetts Institute of Technology

588 PRESENCE: VOLUME 7, NUMBER 6

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1998 2. REPORT TYPE

3. DATES COVERED
 00-00-1998 to 00-00-1998

4. TITLE AND SUBTITLE
An Architecture to Support Large Numbers of Computer-Generated
Actors for Distributed Virtual Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute Technology,Virtual Environments Laboratory,Wright
Patterson AFB,OH,45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

29

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

of its own actors with the CGAs that are controlled by
other computer hosts. Because of the rapid rate of
change in DVE technologies and the ever-expanding set
of performance objectives for any CGA, the system must
be modifiable at reasonable cost. To address these needs,
we undertook the development of a CGA application for
distributed mission training threat systems. Because of
our ready access to military DVEs, we chose to develop
and refine our concepts within military DVEs that are
geared toward Air Force aircrew DMT needs.

In a DVE that uses CGA systems to provide threats
for aircrew training, each of the CGAs must exhibit real-
istic levels of fidelity to all the other actors operating in
the DVE, and they must also interact with human-oper-
ated and computer-controlled actors in a realistic fash-
ion. Achieving these goals using current systems for Air
Force aircrew training in DVEs is not currently possible
for two reasons. First, each manufacturer of primary air-
craft simulator training systems has devised a simulator-
specific threat system and made modeling decisions that
generally support only a specific customer organization
for a select few predetermined threats. This traditional
threat simulation approach is expensive and leads to on-
going difficulties in maintaining threat currency as intel-
ligence updates are made, new weapons are introduced,
and new theaters of operation are identified. These
simulator-specific systems tend to be brittle and unmain-
tainable and cannot be used in a military training DVE
without substantial investment in software development.
Second, the threat-system interaction on a distributed
network must be coordinated, but the individualized
nature of current threat systems precludes the possibility
of introducing coordinated threats. Our work, the Dis-
tributed Mission Training Integrated Threat Environ-
ment (DMTITE) project, was undertaken to address
these two issues.

The DMTITE project is identifying the requirements
for a distributed-threat environment and building a
demonstrator United States Department of Defense
(DoD) High-Level Architecture (HLA) compatible sys-
tem to provide realistic threats for aircrew training. The
DMTITE system will be used within large-scale, HLA-
based DVEs to insert a variety of accurate and highly
realistic threats into the DVE for aircrew training. To be

a suitable system, DMTITE must provide a distributed-
threat environment comprised of surface threats, air
threats, and jamming systems. To achieve these objec-
tives, DMTITE must have threat models and knowledge
bases for interaction with every appropriate entity in the
DVE. A key element of the system is the provision of
realistic behaviors and multiple skill levels for the threat
systems. To further improve the fidelity of the threat
portrayal, we incorporate realistic sensor models, aero-
dynamics models, and weapons models into DMTITE
for each threat system. Decision making can be accom-
plished using a variety of decision-making techniques
such as fuzzy logic or case-based reasoning. Each
DMTITE system must operate autonomously and also
be able to cooperate with other DMTITE systems for
the DVE to portray a coordinated threat environment.
Figure 1 illustrates the anticipated way in which
DMTITE will be used.

As shown in Figure 1, three locations (Eglin, Luke,
and Tyndall Air Force Bases) are participating within this
DVE. Each location has two dedicated DMTITE sys-
tems that are used to insert threats into the DVE. Four
manned aircraft trainer systems for aircrew training are
colocated with the DMTITE systems at each base. Two
additional DMTITE systems in the DVE are responsible
for inserting RADAR threats and RADAR jamming into
the DVE. Each DMTITE can insert a variety of threat
systems into the DVE, and the performance of each
DMTITE system can be varied to portray a variety of
operator skills and tactics.

To help us achieve the requirements mentioned above
and to aid us in developing the prototype, we devised
and refined a software architecture for DMTITE that
naturally supports variety in performance for a given
type of CGA and also allows us to organize and build
vastly different CGAs within the same architecture. The
architecture also had to help us uncover and refine sys-
tem requirements as well. Because the requirements for
DMTITE expanded over the course of the project and
because CGA requirements in general are continuously
changing, an evolutionary and exploratory approach to
knowledge engineering, such as the Rapid Evolutionary
and Exploratory Prototyping (REEP) methodology
(Stytz, Adams, Garcia, Sheasby, & Zurita, 1997) is re-

Stytz et al. 589

quired. To support the REEP approach, our architecture
consists of highly modular components in which inter-
dependencies are well defined and minimized.

The next section presents a short discussion of back-
ground information for our project. Section 3 contains a
description of the operational concept for the DMTITE
system, its requirements, and the architectural implica-
tions of these requirements. Section 4 presents the simu-
lation object model we developed for DMTITE. Section
5 contains a discussion of our use of containerization in
DMTITE. Section 6 presents our architectural solution
to the system requirements that have been levied against

DMTITE. Section 7 presents the system design. Section
8 contains a summary and presents some suggestions for
additional work.

2 Background

This section discusses DVEs, CGAs, relevant
projects, the DoD HLA, the Common Object DataBase
(CODB) baseline for the DMTITE system architecture,
and the REEP approach to system development. These
topics form the groundwork for the DMTITE architec-

Figure 1. DMTITE operational concept for distributed training using distributed virtual environments.

590 PRESENCE: VOLUME 7, NUMBER 6

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-000.jpg&w=359&h=405

ture and its operational environment. Before turning to
these topics, we will first define our terms. In a DVE, an
entity is a component of a DVE whose state can change.
For example, terrain whose appearance and features can
be changed as a result of plowing, explosions, or traffic is
an entity. Terrain that does not change is not an entity.
An actor is an entity that moves with apparent intelligent
purpose. Actors can be virtual (human controlled), con-
structive (traditional simulation controlled), live (de-
rived from instrumented range data), or computer gen-
erated (controlled by a computer program, which may
include artificial intelligence techniques). In a DVE,
weather is not an actor, but a human-controlled aircraft
avatar is an actor. A host is a computer system within a
DVE that allows its human or computer user to control
actors or entities within the DVE and/or to observe the
actions of other virtual environment actors. Human be-
havior modeling is the process of making CGA behaviors
realistic by developing models of the output of the hu-
man decision process. The most important aspects of
developing the behavioral model for a CGA are knowl-
edge acquisition, which is acquiring the information
needed to effectively model human behavior within the
DVE; knowledge representation, which is putting the
knowledge base into a form that can be accessed readily
and used for analysis and decision making during DVE
operation; and building the decision making apparatus
to perform decision making. Knowledge acquisition and
knowledge representation jointly determine the infor-
mation about the human mental models that is brought
to bear on the CGA decision process.

Distributed Virtual Environments: The most
widespread use of network technology for DVEs relies
upon the current distributed interactive simulation
(DIS) suite of standards (IEEE Standard 1278-1993) or
upon the HLA. DIS was designed to link distributed,
autonomous hosts into a real-time DVE via a network
for data exchange. The data describe events and activi-
ties. DIS takes the concept of environmental distribution
to its extreme; there is no central computer, event sched-
uler, clock, or conflict arbitration system. The HLA is a
more comprehensive architectural approach: it describes
the communication requirements, basic system require-

ments, and defines an object-oriented approach to defin-
ing a DVE. Stytz, Banks, and Santos (1996) present ad-
ditional information concerning DIS and DVEs, as does
Blau, Hughes, Moshell, and Lisle (1992) and Blau,
Moshell, and McDonald (1993).

The High-level Architecture: Because of the
difficulties encountered when attempting to reuse simu-
lation software and to engineer participants for a DVE,
the US Department of Defense has undertaken develop-
ment of a High-Level Architecture (HLA) for DVE ap-
plications. A central goal of the HLA is to establish a
framework that facilitates interoperability between simu-
lations and models. A central architectural decision sup-
porting this goal is the separation of application func-
tions from communications functions. All application
functions are managed by the host application software
system while communications functions are managed by
the run-time infrastructure (RTI). The RTI manages
communication paths among executing applications and
ensures that its application acquires the data that it needs
and can make available to the DVE. The data that an
actor needs from other actors in the DVE is identified by
subscribing to the actors that can provide the data. The
data that an actor provides to participants is published to
the DVE, and actors can subscribe only to data that has
been published. The RTI publish-and-subscribe mecha-
nism minimizes the amount of data transmitted between
applications to only the data that is required by the ap-
plications. The foundational papers for HLA are in the
15th Workshop on Standards for the Interoperability of
Distributed Simulations (Calvin & Weatherly, 1996;
Dahman, Ponikvar, & Lutz, 1996; Fujimoto & Weath-
erly, 1996; Miller, 1996; and Stark, Weatherly, & Wil-
son, 1996).

One aspect of achieving HLA compliance for an appli-
cation is the construction of its simulation object model
(SOM). The SOM, in conjunction with the federation
object model (FOM) for a simulation exercise (federa-
tion), specifies the object model template (OMT) re-
quired by all participants in a federation. The SOM is
used to document key information about the software
for generating an entity, such as the types of entities sup-
ported, the information that each entity can export to

Stytz et al. 591

the DVE, the information each entity requires from the
DVE, and the types of interactions that each entity can
participate in. The SOM also documents the informa-
tion that an actor or actor superclass in an application
requires to operate. This information is obtained by sub-
scribing to remote actors in the DVE. Finally, the SOM
documents the information that each actor and actor
class can provide to a DVE and therefore can publish.
Information is made available by subscription and publi-
cation. Other DVE actors can subscribe to classes or to
class types in the application. By subscribing to a class,
an actor is guaranteed that it will receive all updates for
all of the data values for the subscribed class. A publish-
able class is a class that is instantiated within the applica-
tion and that will make certain information about itself
available to other actors within the DVE. Subscription
can take place at the class, superclass, or subclass levels.
For superclasses, information is only subscribable. Sub-
classes can publish and subscribe to information. The
subclasses are refinements of their superclasses and in-
herit properties from them and also expand upon their
properties as well. Only single inheritance is supported
within a SOM class structure. The specification of a
SOM for a system requires the definition of an object
class structure table, an interaction class structure table,
an attribute table, and a parameter table.

The object class structure table in the SOM defines
the classes of DVE actors that a simulation application
can support and the remote DVE actor classes whose
instances and attributes represent potentially useful in-
formation to the simulation application’s local actors.
These classes of local and remote actors are defined by
specifying the hierarchical relationships among the vari-
ous classes in the HLA application. The object class
structure table specifies the classes of CGAs that the ap-
plication will support and interact with, such as aircraft,
missiles, etc., as well as the specific instances of each type
of class that are available, such as a F-15 fighter, Sparrow
missile, etc. In this table, the application designer deter-
mines the actors that the application can make available
and requires in any DVE in which it participates.

The second table required in a SOM is the interaction
class structure table. In a SOM, an interaction is defined
as an action that an actor can perform that can poten-

tially have some effect on another actor in the DVE. The
interaction class structure table specifies the types of in-
teractions in which each actor can participate. As in the
object class structure table, the interactions are described
hierarchically, thereby enabling inheritance to be used to
specify interactions that are common to whole classes of
actors. An important specification in the table is the in-
teraction type supported by each interaction class. Each
interaction can be one that an actor in DMTITE can
initiate, sense, react to, or ignore. An actor can initiate
an interaction if it has the capability to model the initia-
tion of the interaction and can also call the HLA send-
interaction service for the interaction when it is initiated.
An actor can sense an interaction if it is capable of utiliz-
ing information about received interactions. An actor
can react to an interaction if it has the capability of pub-
lishing those of its attributes that have been affected by
an interaction and also updating these same attributes
internally.

The third table required by a SOM is the attribute
table. In the SOM, an attribute is a named portion of a
class of actor’s state whose values may change over time.
The attribute table documents the data produced and
consumed by each class of actor in the application. The
individual actor attributes defined in this table can be
subscribed to by an actor in a remote host or published
to the rest of the DVE by a local actor. By subscribing to
a class or subclass, a remote actor that requires only a
limited subset of information for an actor will receive
only the information that it requires, thereby conserving
network bandwidth and processing power. Conversely,
by specifying only the information that the actor re-
quires to function, network bandwidth and remote-host
processing is conserved because unneeded information is
not generated or transmitted. The attribute table in a
SOM defines the attributes for each of the classes in the
DVE application. Updates to these attributes are the
data that actually flows among the actors that compose a
DVE. To specify the attributes for a class, the name of
the object class for the data item must be specified (us-
ing the same name for the class that was defined in the
object class structure table). In addition, the name of
each attribute for the class, its data type, the cardinality
of the datatype (if it is an array), and the units of mea-

592 PRESENCE: VOLUME 7, NUMBER 6

sure for the data are also specified. The resolution and
accuracy for the attributes specify how accurate the data
must be. The resolution of an attribute is defined to be
the attribute’s maximum deviation from its true value
(value at its generating host) that is permitted through-
out the DVE. Accuracy is defined to be the condition
required to be satisfied for the resolution requirement to
be met. Additional information such as the data update
type and update condition are also specified, these com-
ponents of the table determine if an update to the data is
possible, and if so under what conditions. The attributes
for the classes are defined hierarchically and data types
from superclasses are inherited by the specified sub-
classes.

The fourth, and final, table required in an HLA SOM
is the interaction parameters table. The interaction pa-
rameters table is based upon the information contained
in the interaction class structure table and the attribute
table. The interaction types defined in the interaction
class structure table are the basis for the interaction pa-
rameters table as it determines the specific interactions
to be supported for each class and superclass in an appli-
cation. The attribute table, on the other hand, contains
the list of available parameters that can be supplied by an
actor class or subclass for any interaction. The interac-
tion parameters table presents each generic interaction
and specific interaction that is required to be supported
by the application.

Computer-generated Actors: Computer-gener-
ated actors (CGAs) that exhibit believable humanlike
behaviors are crucial to achieving large-scale DVEs. Ap-
proaches to achieving realistic CGAs are described by
Calder, Smith, Courtemanche, Mar, and Ceranowicz,
1993; Edwards and Stytz, 1996; Laird, Newell, and
Rosenbloom, 1987, 1995; and Tambe, Johnson, Jones,
Koss, Laird, Rosenbloom, and Schwamb, 1995. The
run-time challenges for a CGA arise from the need to
compute humanlike behaviors and reactions to a com-
plex dynamic environment at a human-scale rate of time.
However, the computational challenge is eased some-
what because there is no need to replicate the human
decision process; instead, only the observable aspects of
human decision making must be mimicked. In addition,

the CGA’s behavior must be realistic and accurate
enough so that other CGAs and human participants re-
act to its behaviors as though the CGA’s avatar were hu-
man-controlled.

For our purposes, the major components of a CGA
are vehicle dynamics, behavior modeling, artificial intelli-
gence, and software architecture. Vehicle dynamics are
important because the actor should move through the
virtual environment accurately whether the CGA is hu-
man or computer controlled. The vehicle dynamics for
computer-controlled actors should never allow a human
to identify it as a CGA. Human-behavior modeling re-
quires the acquisition of domain-specific knowledge
about the domain models that humans use and about
the information that humans use in the decision-making
process. For a CGA in a military virtual environment,
human-behavior modeling requires incorporating doc-
trine, tactics, knowledge models, and training into the
CGA.

Artificial intelligence addresses the problems associ-
ated with assessing and reacting to the environment
based upon considerations like plans, assigned mission,
the activities of other actors, the available domain
knowledge, and the capabilities of the vehicle that the
CGA must control. The artificial intelligence component
ensures that the CGA pursues its goals, responds in a
proper, humanlike manner based upon its knowledge
base, develops plans based upon its knowledge base, and
manages other tasks. The vehicle dynamics, behavior
modeling, and artificial intelligence system components
are brought together within the CGA software architec-
ture component. A flexible CGA software architecture
ensures extensibility to meet future CGA requirements.

Common Object DataBase and Rapid
Exploratory and Evolutionary Prototyping: The
DMTITE architecture is based upon the common object
database (CODB) architecture described by Stytz et al.
(1997). The common object database is a data-handling
architecture that uses object classes, containerization,
and a central run-time data repository to manage and
route data among the major objects in an DVE applica-
tion. The CODB holds the entire current state of the
DVE and all the public information for each threat in

Stytz et al. 593

operation within the DMTITE application. The CODB
architecture reduces the coupling in an application’s
software by reducing the amount of information that a
class must maintain about other classes; all of the data
that an entity requires to interact with the DVE is lo-
cated in the CODB, and all of the data an entity must
export is placed in the CODB. To acquire public data
from other DMTITE application objects, an object need
only access the container in the CODB where the infor-
mation resides. The world state manager (WSM) portion
of the CODB handles incoming and outgoing network
traffic from a simulation application and also maintains
the world state for all entities controlled outside of its
host.

The rapid exploratory and evolutionary prototyping
(REEP) methodology (Stytz et al., 1997), is a method-
ology that supports quick extraction and refinement of
requirements, experimentation with alternative means
for satisfying requirements, and rapid incorporation into
the application of the solutions developed by successful
experiments. Exploratory prototyping examines an
implementation solution within the context of an opera-
tional solution, and significantly accelerates the ability to
assess alternative implementation solutions. The intent
of evolutionary prototyping is to allow successive revi-
sions to the overall design and implementation without
making major modifications to the system. The REEP
process begins with the construction of an initial proto-
type of the application to satisfy baseline requirements.

Baseline DMTITE Architecture: The starting
point for the DMTITE architecture, shown in Figure 2,
is the common object database (CODB). This architec-
ture was developed to support the operation of a single
CGA in a DVE. In this architecture, the CODB, as a
run-time data repository, is used to manage data transfer
between the DVE and a single actor in DMTITE. In the
baseline architecture, the network interface and network
component is responsible for the transmission of infor-
mation between DMTITE and the other computers that
are instantiating the DVE. As each DIS protocol data
unit (PDU) arrives, it is forwarded from the network
interface software to the WSM. The WSM is responsible

for maintaining the state of the entire DVE. Therefore,
the WSM takes incoming data, updates its information
about the entity, and places the information in the con-
tainer for transmission to the CODB. In addition, the
WSM is responsible for dead reckoning entities inbe-
tween receipt of data for the entity. As a result, when the
CODB requests an update to its information from the
WSM, the WSM has a container holding the most-cur-
rent information about the state of the DVE ready to be
dispatched.

Once in the CODB, the data is made available to the
actor’s decision-making system, dynamics unit, and sen-
sors. The dynamics unit and sensors components share a
container to minimize the amount of data to be trans-
ported, and together comprise the physical dynamics
component (PDC). The PDC contains the description
of all of the physical attributes and properties of the indi-
vidual CGA. In addition to the dynamics unit and sen-
sors, in the baseline architecture the PDC component
includes the actor-specific properties, performance capa-
bilities, weapons load, damage assessment, and physical
status. The PDC also computes physical state changes.
For example, the dynamics unit uses the information in
the CODB to compute the current velocity and orienta-
tion of the actor, and places the results of its computa-
tions back into the CODB for use by the decision-mak-
ing system and for transmission to the rest of the DVE.
The sensors component uses the information to deter-
mine the actors that are within range of the actor’s sen-
sor systems and places the result into the CODB for use
by the decision-making system.

The decision-making system for the baseline architec-
ture consisted of two components (Figure 2): a skills
component (SC) and the active decisions component
(ADC). The SC consists of those portions of the CGF
(computer-generated force) that vary between individual
entities within a type and class. This component serves
to model the skills and ability of the operator of an en-
tity. The ADC contains the intelligent decision-making
processes and the knowledge required to drive them.
The knowledge includes the overall mission, goals and
objectives, plan generation, reaction time, and crisis-
management ability. In the baseline architecture, the

594 PRESENCE: VOLUME 7, NUMBER 6

ADC has three reasoning engines: the strategic decision
engine (SDE), tactical decision engine (TDE), and the
critical decision engine (CDE). These engines perform
long-term, near-term, and immediate-reasoning opera-
tions for the CGA, respectively. These decision engines
(DEs) are described further in Stytz et al. (1996).

We separated the PDC, SC, and ADC components
from the remainder of the CGF architecture and from
each other to ensure that modifications to a component
is isolated to the component and do not propagate
throughout the entire system. The PDC is only respon-
sible for the basic entity maneuver and sensing computa-
tions, and functions completely unaware of the status of
the other system components. Likewise, the ADC is
solely responsible for decision making and only knows

about the physical component’s status based upon the
data communicated to it via the CODB. In the baseline
architecture, the SC is more closely tied to the ADC
than the PDC because the ADC is responsible for com-
puting control outputs for the entity based upon the
modeled pilot’s skills. The SC describes the pilot’s ability
to the decision-making component so that the decision
can be appropriately constrained by the simulated pilot’s
abilities.

Using the information described above, the baseline
architecture, and interviews with subject-matter experts,
we defined the requirements for DMTITE in light of its
concept of operations and the objectives for the applica-
tion. The next section summarizes the results of this
process.

Figure 2. Baseline distributed training system application architecture showing the major architectural

system components.

Stytz et al. 595

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-001.jpg&w=359&h=338

3 DMTITE Requirements and Their
Implications

As a prelude to describing our architectural solu-
tion and to support our SOM specifications and software
design decisions, this section presents a discussion of the
system requirements that DMTITE must satisfy. To
clarify the connection between these requirements and
our subsequent architecture and design, we also assess
the implications of the requirements for the DMTITE
software and knowledge-base architectures.

DMTITE Requirements: The requirements for
DMTITE can be divided into several categories. These
categories were derived from those used to specify the
requirements for aircraft CGAs by Stytz, Banks, and
Santos (1996). These requirements range from the soft-
ware architecture that implements the CGA to the
knowledge base used by the CGA to support its decision
making. The origin of these requirements lies in the
need to support a wide variety of aircrew training sce-
narios while also using a credible representation of the
behavior for each modeled entity. Briefly, DMTITE
should possess the capability to perform the following
tasks.

1) hosting a wide variety of threat systems, such as
anti-aircraft artillery (AAA), surface-to-air missiles
(SAMs), jamming radars, acquisition radars, sound
and infrared DVE actors systems, aircraft, and un-
manned autonomous vehicles (UAVs),

2) ease of modifiability for its knowledge bases, deci-
sion-making systems, and networking services,

3) versatile decision mechanisms and modifiable actor
behaviors,

4) hardware independence,
5) exterior (commercial) software independence,
6) a variety of threats at varying levels of fidelity de-

termined by the training scenario being executed,
7) a variety of skills levels for each actor type for rea-

soning capabilities and performance skills,
8) terrain reasoning capability as part of operator

emulation,
9) accurate modeling of real-world sensor outputs,

10) HLA compliance, and
11) capability to download scenarios from other

DMTITE locations and reuse them.

The next few paragraphs delve into a select few of
these requirements and assess their implications for the
DMTITE project.

A variety of threat systems: For the DMTITE to
achieve its objective for operational training, it must be
capable of inserting a variety of threat systems into the
DVE. One project goal is to separate the threat systems
from the pilot training system and to distribute them
across the network; therefore, every threat system must
have at least a generic representative within DMTITE.

Modifiability: Modifiability is the ability to en-
hance existing CGA capabilities as well as perform soft-
ware maintenance. This capability includes the need to
rapidly expand a domain-specific knowledge base, the
use of a flexible software architecture, the capability to
operate on a variety of hardware, and independence
from external software. The requirement for knowledge-
base expandability addresses the need for the CGA to
incorporate new strategies, tactics, and maneuvers as ally
and opponent concepts change. The need for modifi-
ability also addresses the need to maintain DMTITE in
the field and supports improvement of the system’s op-
eration by permitting well-encapsulated changes to the
knowledge base. A flexible software architecture likewise
assists in readily adapting DMTITE to meet new perfor-
mance, interface, and communication protocol require-
ments. Hardware independence addresses the need to be
able to port DMTITE to more-capable computer hard-
ware with minimum changes to the system’s code. The
need to remain independent from commercial, non-
DMTITE software supports the need to remain inde-
pendent of hardware and allows the system to take ad-
vantage of developments that can improve its
performance.

High fidelity representations: High-fidelity repre-
sentations in DMTITE are achieved by operating each
CGA using accurate world representations (especially

596 PRESENCE: VOLUME 7, NUMBER 6

terrain), dynamics for vehicle motion, sensor and
weapon models, and models of human behavior. The
world representations are based upon surface representa-
tions composed from primitive data elements organized
within a hierarchical representation of the terrain data.
However, because CGAs do not operate in isolation,
their world representation must have a high-fidelity
counterpart for manned systems as well as for other
CGA systems. Correct vehicle dynamics ensures that the
DVE actor only moves according to the capabilities of its
real-world counterpart and does not exhibit unrealistic
performance given the DVE’s terrain, weather, and at-
mospheric conditions. Likewise, the weapons and sensor
models for each DMTITE actor must use models with
the same sensitivity, field of view, and range as used by
their real-world counterparts. The requirement for sen-
sor fidelity exists across all sensors, from the eyesight of
the assumed operator of the CGA to the radar and infra-
red sensing systems used by the real-world counterpart
of the CGA.

Adaptable decision mechanisms. Adaptable deci-
sion mechanisms give the CGA flexibility in dealing with
situations that occur in the distributed virtual environ-
ment. Adaptable decision mechanisms permit the system
to maintain robust, credible behavior for DMTITE ac-
tors under a variety of external circumstances, such as
missing or inconsistent information, and at different lev-
els of operator skill. This requirement ensures that each
threat instantiated by DMTITE can operate effectively
even when confronted by conflicting or incomplete in-
formation and when under system stress.

Threats at varying levels of fidelity and a variety of
skills levels: The first component of this requirement
speaks to the need to conserve computational power.
Threat actors should be able to be instantiated at mul-
tiple levels of fidelity so that only those threats that re-
quire a high-fidelity representation use a high-fidelity
model and are permitted to consume a correspondingly
greater amount of available computational resources.
Regardless of the level of fidelity, each threat actor
should also be available in a range of skill levels. Multiple

skill levels allow the training to be tailored to the abilities
of the human participants and provide a more realistic
training situation because the opponents and allies ex-
hibit a variety of capabilities. The skills can be realized by
varying manual skills, by varying the range of options
available to the decision-making component, by varying
the knowledge about friendly and enemy tactics available
to the decision-making component, and by permitting
the decision-making component to forecast the impact
of each available option on its ability to perform its mis-
sion.

Implications of these requirements: The above
requirements have implications for system complexity,
real-time performance, knowledge engineering, and
scalability. We discuss these implications below.

The requirement to be able to instantiate a wide vari-
ety of threat systems within a single computer host indi-
cates that the system must use general-purpose reason-
ing mechanisms coupled with threat-specific knowledge
bases for reasoning about the state of the DVE and the
actors within it. To conserve memory and minimize data
handling, the architecture must allow the instantiated
threats to share a single, shared representation of the
DVE state, permit identical entities to share knowledge
bases, and allow each threat to have a customizable,
publish-and-subscribe profile for its interaction with the
other DVE participants regardless of whether they are
local or remote.

The requirement to achieve a modifiable system indi-
cates that the system should be structured so that com-
ponents are strictly isolated from each other and so that
there is loose coupling among components of the sys-
tem. By ensuring the isolation of system components,
the architecture minimizes the impact of changes to the
DMTITE application, and it also serves to retard archi-
tectural entropy. Two central consequences of the goal
of achieving isolation and minimizing coupling are that
data movement among components should be carefully
managed within the architecture and that the program-
mer should be constrained to remain within the system’s
architectural approach. Modifiability can complicate the
design because there must be a clean separation between

Stytz et al. 597

the knowledge representation and the decision mecha-
nism.

The need for DMTITE to provide high-fidelity actor
representations affects the system’s architecture, knowl-
edge base, and information flows. Because we require
high-fidelity actor representations but must also con-
serve processing power, the architecture must support
multiple levels of fidelity in the representations of the
DVE terrain, actor vehicle dynamics, and simulated hu-
man behavior. Additionally, DMTITE must have access
to different levels of detail of information so that the
decision engine is not burdened with reasoning about
high-detail information that is beyond its sensor range.
The data flows must ensure that the information avail-
able to the decision-making mechanisms accurately
models the type and quantity of information that the
sensors in the actual vehicle would provide to a human
operator in the real world. As regards the knowledge
base, the design should encapsulate related items of
knowledge within a single access unit and ensure the
separation of unrelated knowledge components. Encap-
sulated knowledge permits the decision mechanisms to
atomically access the information they require and also
permits the designer to update the knowledge bases with
minimal impact upon other information in the knowl-
edge base.

The requirements for adaptability, multiple skill levels,
and multiple levels of fidelity affect several aspects of the
knowledge base and the decision-making components.
First, the decision-making component must contend
with incomplete information and uncertainty about the
DVE because available information will be limited to
that capable of being provided to the operator in the real
world. The decision mechanism must be structured so
that the amount of information considered when mak-
ing the decision can be adaptively varied and so that ad-
ditional possibilities can be considered as time and cir-
cumstances permit. Second, because the system requires
general-purpose decision mechanisms, the knowledge-
base component must be comprehensive enough to al-
low the decision mechanism to satisfy the requirements
for multiple skill levels and multiple levels of fidelity. Fi-
nally, the need for multiple levels of fidelity affects the
decision-making component in that one means of

achieving computational savings is to alter the type of
reasoning performed. Therefore, the decision-making
component of the DMTITE architecture must support
the use of different reasoning systems for a given threat
without requiring changes to the threat’s knowledge
base.

The next step we undertook in developing DMTITE
was identification of the required inputs and outputs for
the system based upon the types of interactions that each
actor had to support. The next section summarizes the
HLA-compliant simulation object model that resulted.

4 The DMTITE Simulation Object Model

The specification of the simulation object model
(SOM) for DMTITE required the definition of an ob-
ject class structure table, an interaction class structure
table, an attribute table, and a parameter table. The de-
velopment of the SOM is, in many ways, a refinement of
the requirements identified in the preceding section.
However, in the preceding section requirements were
specified as high-level objectives. With the complete
specification of the SOM, many of the interaction re-
quirements and the fidelity provided by the system are
determined. In our case, since we were developing the
system from scratch, we were able to address the desired
interactions in detail and to use this specification to
guide the capabilities developed in each of the compo-
nents as well as to assist in determining the features that
the DMTITE architecture should exhibit.

The first table defined for DMTITE was the object
class structure table, depicted in Table 1. In Table 1 and
the other SOM tables, the items in the farthest lefthand
column are the superclasses for DMTITE; the subclasses
of a class are below and to the right. The subclasses are
refinements of their superclasses and inherit properties
and subscription and publication requirements from
them and can also expand these properties as well. In
Table 1, we specified all of the classes of actors and the
subclasses of actors that DMTITE can instantiate for an
exercise. For example, Table 1 shows that DMTITE has
a superclass called AAA. As subclasses of the AAA class,
two additional classes are defined: the generic AAA and

598 PRESENCE: VOLUME 7, NUMBER 6

the ZSU-28. Data about actors in both of these sub-
classes can be accessed by other actors by subscribing to
information about these types of actors, and, when in-
stantiated, these DMTITE actors publish information to
the DVE.

The object class structure table documents the types
of actors that are available within DMTITE and the pub-
lish-and-subscribe, information-transfer relationships
among these actors and the remainder of the actors in
the DVE. These information-transfer relationships are
the basis for the information documented in the class
attribute table defined for DMTITE. However, before
the class attribute table can be defined, the interaction
class structure table must be specified.

The DMTITE interaction class structure table, illus-
trated in Table 2, specifies the interactions required of
each DMTITE actor. Table 2 contains a portion of the

interaction class structure table of the SOM for
DMTITE. Due to space limitations, we do not include
all of the information that the complete table requires,
but it is all present in the actual SOM. The basic type of

Table I. DMTITE Simulation Object Class Structure Table

Class Type

AAA
generic AAA
ZSU-28 AAA

SAM
generic SAM

Radar
generic radar
generic fixed radar
generic mobile radar

Jamming radar
generic jamming radar

UAV
generic UAV

Aircraft
generic fighter aircraft
generic bomber aircraft
generic Wild Weasel aircraft

Missile
generic radar-guided missile
generic infrared-guided missile
generic laser-guided missile
generic radar-homing missile

Table 2. Abstract of the Interaction Class Structure Table
for the DMTITE Simulation Object Model

Interaction Interaction class Interaction type

radar
broadcast

friendly radar-
broadcast

initiate friendly-
broadcast

friendly broadcast-
state update

terminate friendly-
broadcast

air-to-ground
attack

opponent missile-
attack

opp missile launch
opp missile state
opp missile de-

coys deploy
opp missile impact

& detonate
opponent

rocket attack
opp rocket launch
opp rocket state
opp rocket impact

& detonate
air-to-air

attack
opponent missile-

attack
opp missile launch
opp missile state
opp missile impact

& detonate

Stytz et al. 599

interaction is described in the leftmost column, and its
subclasses are placed in columns to the right. With the
simulation object class structure and the interaction class
structure tables defined, we can now turn to the defini-
tion of the types of interactions that DMTITE can par-
ticipate in and the information that must be transferred
to allow these interactions to occur. As the first step in
defining the data content of the interactions, the data
produced and consumed by each class must be defined
and documented in the attribute table.

The attribute table in a SOM defines the data at-
tributes in each of the classes in an application. Updates
to these attributes are the data that actually flows among
the actors that compose a DVE. We have found that it is
generally easiest to first specify the attributes for the su-
perclass(es) in the attribute table and then to specify at-
tributes of the subclasses for each superclass. In our ex-
perience, the attribute table is a crucial table because it
determines the scope of the data that can be used in an
interaction. The omission of an attribute here will not
only affect the specification of the interactions for an

actor but will also result in additional code development
later in the project to rectify the mistake. A portion of
the attribute table for DMTITE is presented in Table 3,
and illustrates how the superclass and subclass defini-
tional process occurs. In Table 3, the superclass we de-
fined first is the radar class. Within this class, ten at-
tributes are identified that are common to all of the
subclasses. Note that several attributes have no resolu-
tion; this commonly occurs and is permitted in the HLA
specification when the associated attribute is an enumer-
ated type. Within the radar class, one subclass is speci-
fied, the generic mobile radar class. In this class, four
additional attributes are specified. Therefore, in con-
junction with the attributes specified for the superclass,
every actor of the generic mobile radar class is required
to publish fourteen attributes.

The last table to be specified is the interaction param-
eters table. A portion of this table for the DMTITE
SOM is presented in Table 4; this excerpt specifies the
parameters that an opponent radar must supply in an
interaction with a DMTITE actor. The parameters re-

Table 3. A Portion of the Attribute Table for the DMTITE Simulation Object Model

General
object
class

Derived
object class

Attribute
name

Data
type Cardinality Units Resolution

Radar
Radar name char 30 N/A N/A
frequency long N/A KhZ N/A
range short N/A meters N/A
power long N/A watts N/A
beam width float N/A degrees .5 degrees
beam height float N/A degrees .5 degrees
sweep rate float N/A degrees/sec N/A
location long 3 meters 10 meters
elevation limits float N/A degrees .25 degrees
angular accuracy float N/A degrees .25 degrees

generic mobile radar
total fuel short N/A litres liter
remaining fuel short N/A litres liter
direction of motion float 3 N/A N/A
speed short 3 km/hour .5 km

600 PRESENCE: VOLUME 7, NUMBER 6

quired for two interactions are specified: one interaction
initiates a radar broadcast, and the other interaction sup-
ports a state change by the same radar. For example,
Table 4 of the DMTITE SOM specifies that for an op-
ponent radar to initiate a broadcast, it must supply ten
parameters to any DMTITE actor that has subscribed to
this particular type of DVE information. By virtue of
simply subscribing to this interaction subclass, any
DMTITE actor that needs information related to an op-
ponent radar broadcast initiation is guaranteed to receive
the information from the opponent host radar simula-
tion system. Our practice is to place a parameter in this
table at the most general level that is possible, thereby
allowing other actors in the DVE to obtain useful infor-
mation about our actors, and vice-versa, without requir-
ing subscription to a multitude of more-specific interac-
tions. This approach is by no means a standard one, and
represents our best estimate of how to exchange infor-
mation within the DVE at the lowest computational and

network bandwidth cost. At the present time, an argu-
ment can be made that the parameters should be speci-
fied at the lowest level in the hierarchy to which they
apply, thereby allowing a remote actor to specify only
the interactions that it needs, and thereby only receive
the information it requires. We do not find this argu-
ment to be persuasive, but it will not be resolved until
further testing of the HLA is completed.

The completion of the SOM provided us with a com-
prehensive guide to all of the data required to be trans-
ported from or to each actor in DMTITE. The specifica-
tion of the four tables for the generic actor classes alone
required forty pages. Upon examination, the tables dem-
onstrate that massive amounts of data must be moved
between each actor and the network interface, and that
this movement posed a potential performance bottle-
neck for the system. While we remained confident that
our initial baseline architecture could be adopted to
meet this challenge, the amount of data to be trans-

Table 4. A Portion of the Interaction Parameters Table for the DMTITE Simulation Object Model

Generic interaction Interaction class Parameter name Datatype Cardinality

radar receive
opponent radar broadcast

initiate opponent broadcast
radar name char 30
frequency unsigned long N/A
range short N/A
power long N/A
beam width float N/A
beam height float N/A
sweep rate float N/A
location long 3
elevation limits float N/A
angular accuracy float N/A

opp broadcast state update
radar name char 30
frequency unsigned long N/A
range short N/A
power long N/A
sweep rate float N/A
location long 3

Stytz et al. 601

ported forced us to reexamine our approach to contain-
erization within DMTITE. We turn to a discussion of
this aspect of DMTITE in the next section.

5 Containerization Within
the DMTITE Architecture

One of the issues we had to address in DMTITE
was moving the remote entity data from the network to
each DMTITE actor via the world state manager (WSM)
and the CODB. The data movement between the WSM
and the CODB has the greatest volume in the system
(numbers of bytes per second) and must be performed
efficiently to achieve our performance objectives. Four
issues are addressed in this component of the design.
The first issue is that the system is expected to function
within large-scale DVEs and will have to receive, pro-
cess, and manage large amounts of data received over
the network. Unless properly managed, these elemen-
tary tasks can consume a significant percentage of the
computing resources for the host. Therefore, the incom-
ing and outgoing data management tasks must be ac-
complished in a manner that is efficient from the view-
point of computing resources while also allowing each of
the actors in the DMTITE application to have access to
current data about the state of the entities in the DVE.

The second issue is that each of the actors in
DMTITE can have different requirements for DVE
data, and the SOM presented in the preceding section
allows for this eventuality. In current HLA thinking,
each of the actors in a system can specify the subset of
DVE state data that the actor needs to function properly.
Reciprocally, the actor must furnish to all the other
members of the DVE the data these remote actors re-
quire about the DMTITE actor so that the other actors
are able to function properly. These data-interchange
requirements are specified in the FOM for the DVE.
While specifying data requirements for a single entity on
a single machine is a straightforward process, challenges
arise in satisfying these needs in a situation in which
many actors reside on a single host. The first of these
challenges is the need to support customized data trans-

fers among actors and the DVE without consuming an
inordinate amount of computational resources by either
the actor or the network portion of DMTITE. We be-
lieve that each of the actors should not need to be aware
of the FOM requirements for the DVE that DMTITE is
participating in; otherwise each of them would have to
assemble specialized outgoing messages for each of the
different information requirements imposed upon it by
the other actors in the DVE. Instead, each actor should
be allowed to place all of the required outgoing informa-
tion into a single message, and some other portion of
the system should manage information customization.
This same approach should also be applicable to actor-
specific transfers of data from the DVE to each of the
actors in DMTITE. The second of these challenges is
the need to be able to efficiently adapt to changes in a
FOM, because DMTITE will be required to participate
in a wide variety of HLA-based DVEs. At the actor level,
changes in the FOM will be reflected in the data trans-
ferred between an actor and the DVE. We need these
changes to be well encapsulated and transparent to the
remainder of the actor’s software and to most of the net-
work interface software as well.

The third issue that arises from the need to support
HLA is the desire to be able to readily adapt to changes
in the HLA standard. We expect that there will continue
to be changes to the HLA that affect the actor code and
their interface to the DVE. Our desire is to isolate the
actor from HLA changes as much as possible.

A fourth issue is the need to support our REEP ap-
proach to design and implementation of DVE applica-
tions. Support for REEP requires that the major system
components be isolated from each other and that the
actor code be separated from the DVE interface code.

As a result of examining these requirements, we re-
fined our approach to containerization to better support
the transport of data between the major components of
DMTITE, as shown in Figure 3. We use containers to
move data in structured groupings between the compo-
nents. Within DMTITE, there is a container between
the WSM and the CODB for every major entity type,
such as actors, phenomenology, and electromagnetic
emissions. Each container is, in turn, composed of pal-
lets, and each pallet is composed of slots. For example, in

602 PRESENCE: VOLUME 7, NUMBER 6

the actor container shown in the top half of Figure 3
there are two major pallets, one for Blue (friendly) forces
and one for Red (opponent) forces. Recall that we are
building a threat system, so from the point of view of the
threat system, the friendly forces are composed of
non-US aircraft and systems and the Red forces are com-
posed of US aircraft and systems. Within each of these
two pallets are additional pallets, one each for ground
and aircraft actors. And within the Red aircraft pallet
there are three additional pallets, one for F-15, F-16,
and C-17 aircraft. In each of these pallets are the slots
that are used to hold state information for each actor of
that type within the DVE, the type being Red Aircraft

F-15, Red Aircraft F-16, and Red Aircraft C-17. Each
type of actor (air, land, surface, subsurface, and space) as
well as each subtype for each type has a dedicated, pre-
allocated portion of the container, its slot. Each pallet
has a pre-allocated number of slots or subpallets. We
allocate an identical amount of memory for each actor,
even though in some instances this approach leaves some
data space unused for an individual actor’s slot in the
container, and even in some of the pallets. We view this
an acceptable tradeoff because for our purposes the ob-
jective is to minimize the cost of moving data between
the WSM and the CODB.

Because the size and structure of the container are

Figure 3. The use of containers to transfer data between the CODB and the world state manager.

Stytz et al. 603

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-002.jpg&w=351&h=383

static, a single operation can move the data from the
WSM to the CODB. To further minimize the cost of the
operation, we move the data between the WSM and
CODB using a double-buffering scheme. Double buff-
ering allows the WSM to maintain the state of the DVE
without concern about contention with the other system
components for the data structures. As a result, we can
maintain an accurate description of the DVE within the
WSM while permitting the major components of the
system to access data in the CODB whenever they re-
quire the data. And, conversely, each actor has conve-
nient access to the data it needs, and the CODB can also
prepare the outgoing container for the WSM when fill-
ing the container does not unduly interfere with the per-
formance of the CODB’s other duties. In this way, we
can decouple the operation of these two data-intensive
components of DMTITE.

Once the data is in the CODB, the actors can access
the data or it can be repackaged into sub-CODBs for use
by groups of actors with common data requirements, as
shown in Figure 4. Figure 4 shows that a subset of the
data in the CODB, the DVE’s aircraft, have been re-
packaged and transmitted to a sub-CODB in a container
for use by a set of actors that have a common set of data

requirements. Generally, repackaging would be per-
formed when there are enough DMTITE actors with
common data requirements so that the expense of re-
packaging is offset by the time saved by not transmitting
the data to each actor individually. These sub-CODBs
also can have their own methods attached to them,
thereby allowing for some specialization in the data sup-
plied to its user-actors. The repackaging is performed by
methods within the CODB class, and the data is placed
into an outgoing container that is transmitted to a sub-
CODB. If all of the actors that access a given sub-
CODB have identical data requirements, then we do not
move the data from the container to a sub-CODB; in-
stead the actors access the single container directly. In
this case, we use a counter attached to the container to
ensure that all of the actors serviced by the container do
actually get a chance to read the container before a re-
freshed container is requested from the CODB.

When an actor must transmit data to the DVE, the
actor uses a container to transmit the data to the CODB,
as illustrated in Figure 3. For an individual actor con-
tainer, the container has the same format as its slot in the
CODB. If the container is shared among several actors,
then each of the actors has an assigned slot to fill with its

Figure 4. Repackaging data in the CODB for a sub-CODB for use by actors within DMTITE .

604 PRESENCE: VOLUME 7, NUMBER 6

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-003.jpg&w=353&h=237

data. Once the container is ready to be dispatched, the
CODB signals the WSM to accept the data. Each actor
exports all of the data required by the SOM for each
container update: we rely upon the WSM and the HLA
run time interface to manage repackaging the exported
data to meet the FOM requirements.

With the specification of the data to be moved—and
having refined our use of containerization to accommo-
date the large amount of data to be transmitted among
the major system components—we can now turn to a
discussion of the DMTITE architecture.

6 The DMTITE Architecture

In this section we describe our architectural solu-
tion to the DMTITE requirements. The solution incor-
porates containerization and the CODB, and addresses
the data handling issues raised by the DMTITE SOM.
This section opens with an overview of the architecture
and the proceeds to a discussion of the data flow within
the system and our approach to achieving the desired
data flow within the architectural constraints.

Architectural Overview: The architectural solu-
tion presented in Figure 5 is based upon the generic
single CGF DMTITE architecture outlined in Figure 2.
The main architectural components of the generic CGF
architecture are maintained in the DMTITE architec-
ture; however, there are a few key differences. The archi-
tecture uses the CODB, and has provision for multiple,
specialized, sub-CODBs that can be used to provide in-
formation to a select subset of the actors hosted in a
DMTITE system. These sub-CODBs are shared by their
actors, and have the same protection mechanisms and
containerization associated with them as the main
CODB. As in the generic architecture, the main CODB
and WSM combination serves to transmit data to the
DVE and to receive data into DMTITE. The CODB
and all of its sub-CODBs are used to store and forward
state information from actors hosted by DMTITE to the
DVE through the WSM. The WSM is responsible for
interfacing with the HLA RTI. These two components
work together to ensure that each DMTITE satisfies its

DVE FOM requirements by consolidating the output
from the actors and then transmitting the actor state
data to the rest of the DVE in a manner that satisfies the
FOM. Within an individual DMTITE system, each actor
threat type shares a knowledge-base set that was as-
sembled specifically for its actor type. However, while
the knowledge bases for a specific actor type are shared
by all of the actors of that type at run-time, not all of the
actors utilize all of the knowledge base’s information.
The information accessed from the knowledge bases is
determined by the fidelity level and skill level required of
each actor instantiation. Currently, the knowledge bases
are read-only at run-time. The decision mechanisms
within each threat actor are instantiated along with the
actor and are not shared between instantiations. Because
knowledge bases are shared between threats, the difficult
and expensive knowledge-base construction process
must be accomplished only once, but the burden of
achieving different levels of fidelity and skills falls upon
the decision mechanisms and their use of the knowledge
bases.

Even though the architecture in Figure 5 resembles
that of Figure 2, a few words of explanation of the differ-
ences between it and Figure 2 are in order. The opera-
tion of the network interface and network, WSM, and
the dead-reckoning engine are the same as that for the
basic architecture. Once the DVE state information
reaches the CODB, the data is repackaged into outgoing
containers for either individual actors or for a single ac-
tor class. This repackaging is accomplished by an object
manager. Once the DVE state reaches a sub-CODB, the
data is dispatched from there in containers to the actors
serviced by the sub-CODB. The containers that depart
the CODB or a sub-CODB for an actor are customized
for the actor, and contain only the DVE information
required by the actor as specified in the SOM. There are
two components of the threat database for each actor
type: the environment database and the mission, strat-
egy, and tactics database. The environment database for
each actor type contains the specification of the terrain
and other static portions of the DVE in visible wave-
lengths as well as the wavelengths used by the actor’s
sensors. The other portion of the threat database con-
tains the information about the individual actor’s mis-

Stytz et al. 605

sion, the tactics for the threat type, and the strategies to
be employed by the threat type. Within each actor
threat, the skills component remains as described previ-
ously for the individual actor case. The only change to
the active decisions component was the replacement of
the basic control module by the arbitration engine (AE).
The function of the AE is to determine which of the de-
cision engine outputs should be used as the actor’s next
action. We changed the name of this component to re-
flect the fact that its decision making became more com-
plex so that the system could better select the output to
use and also because the AE can employ a variety of de-

cision-making mechanisms when arbitrating over the
outputs from the other decision engines in the ADC.
The functionality of the physical dynamics component
was unchanged.

When an actor has computed its new state, this infor-
mation must be provided to the other actors in the
DMTITE application at the host as well as to the other
actors in the DVE. To accomplish this data transfer, the
actor places its state information into a container that is
then dispatched to the CODB (possibly via a series of
sub-CODBs) for relay to the WSM. Once the new state
data is in the CODB, the actor data is passed on to the

Figure 5. DMTITE system architecture.

606 PRESENCE: VOLUME 7, NUMBER 6

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-004.png&w=359&h=398

WSM for transmission to the DVE and is also repack-
aged into the next outbound container to leave the
CODB for the actors in the local DMTITE application.

DMTITE Data Flow and Data Filtering: Within
the DMTITE HLA operational environment, each sys-
tem has perfect knowledge about the state of all of the
entities in the DVE, which is an inaccurate portrayal of
the real-world operational environment. The inaccuracy
arises from the fact that known sensor limitations are not
imposed upon the data; therefore, each sensor has, in
effect, unlimited visibility coupled with unlimited sensi-
tivity. As a result, the CGAs within DMTITE could have
knowledge about the state of the DVE and the entities
in it that is unavailable to their real-world counterparts
under similar environmental and sensor conditions. To
address this issue and increase the fidelity of the opera-
tion of DMTITE actors within the DVE, each threat
within a DMTITE system has its information restricted
by filtering the incoming data so that the CGA threat
operates only upon a realistic set of information. Figure
6 illustrates how this is accomplished within the
DMTITE architecture.

Figure 6 presents our approach to DVE data filtering
for a single actor. Whenever a threat application acquires
DVE state information, the information must always
come through the CODB. However, before the actor
operates upon the information in its container, the infor-
mation is filtered by sensor models. The sensor models
restrict the information provided to the actor so that the
information available to the actor matches that provided
to a real-world counterpart system. After filtering, the
environment data is used in conjunction with the knowl-
edge bases by the decision engines (DEs) for their deci-
sion-making computations. The AE takes the results
from each DE and decides which of the results should be
used as the output. The decisions from the AE are then
forwarded to the CODB where other threat compo-
nents within DMTITE and in the DVE acquire the out-
puts for their computations.

The above model for data filtering is acceptable for a
single-actor system, but the requirement to host more
than one actor in a DMTITE necessitates a modified
approach to data filtering when multiple actors are using

the dynamic environment data in a single CODB. Our
model, as shown in Figure 6, places all of the informa-
tion that an actor requires for decision making into the
actor’s knowledge base. The difficulty arises from the
fact that in DMTITE the dynamic environment data
destined for an actor type is transferred to the actors
within a single container, which is then operated upon
by a single sensor model before it is placed into the
knowledge base. By virtue of the knowledge base being
shared by all of the actors of a single type, the output of
the sensor model is then shared by all of the actors of a
type, even though the actors do not have identical sensor
input requirements. Therefore, we modified our model
for the information flow from the DVE to each indi-
vidual actor. This new information flow model is de-
picted in Figure 7.

As shown in Figure 7, the transfer of data from the
CODB to the actor is now mediated by new operations.

Figure 6. Distributed virtual environment data flow through

the application for an individual DMTITE threat.

Stytz et al. 607

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-005.jpg&w=215&h=300

As before, the information from the CODB required by
an actor’s SOM is dispatched via a container to the actor.
However, instead of the actor accessing the container
directly, the actor accesses the data after it has been pro-
cessed and placed in the physical state information inter-
face. Recall that each CODB has methods attached to it
to manage the packing and unpacking of the container.
We built upon this method-based access to implement
filtering. In our revised approach to DVE state filtering,
actor data access is initiated upon the arrival of a new
container from the CODB.

The container unpackaging software, called the sensor
interface, extracts data from the container and forwards
it to the sensor models, called the physical component,
for processing. However, this approach to DVE state
filtering is not complete because it ignores processing
that may have to be performed to support decision mak-
ing when phenomenology and weapon systems (both
friend and foe) must be considered in the decision-mak-
ing process. These considerations resulted in additional
change to the architecture, as shown in the diagram in
Figure 8.

Figure 8 presents the final view of the DMTITE archi-
tecture. In this figure we emphasize the data flow and
sensor interaction aspects of the architecture. This view
of the architecture illustrates how the architecture sup-
ports the data flows and information-filtering objectives
presented in Figure 5 and Figure 7. To keep the diagram
as uncluttered as possible and to better illustrate the data
flow for sensor filtering, the containers and CODB have
been omitted from this diagram, but they are still pres-
ent in the architecture. In the revised DMTITE architec-
ture, we model sensor data filtering and the actor’s re-
sponse to the filtered data as a two-stage process. The
first stage is modeling of the physical world state, and
the second stage is reasoning upon the resulting state

information. The reasoning outputs are then used to
control the actor, to feedback into the data filtering pro-
cess, and to generate outputs for the DVE.

In this version of the architecture, the sensor interface
still serves as a data warehouse and data router between
the container and the physical component models. The
physical component models the physical operation of the
sensors and incorporates phenomenology and weapon
information into its filtered output DVE state informa-
tion. The output of the physical component is passed to
the decision-making component via the physical state
information interface (PSII). The PSII stage of DVE
state processing routes the information from a physical
component to the actor-specific knowledge bases that
require the particular type of information produced by a
sensor. The operation of the PSII in many ways parallels
that of the CODB: the PSII functions as a run-time data
repository for the physical model computations of the
sensor outputs and passes the information to the deci-
sion-making components of the actor that requires the
information. The incoming DVE state data is used in
conjunction with the information contained in the actor-
type, specific-threat knowledge bases by the SDE, TDE,
and CDE to perform their long-range, mid-range and
immediate decision-making functions. The SDE, TDE,
and CDE place the outputs of their computations into
the AE, which selects the actions that are fed back to the
physical components to be acted upon, the dynamics
and sensor components, and can also be sent out to the
DVE as well.

7 DMTITE System Design

The design for DMTITE is object based and
strongly reflects the structure suggested by the

Figure 7. Processing of world state data using actor-specific sensor models within DMTITE .

608 PRESENCE: VOLUME 7, NUMBER 6

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-006.jpg&w=434&h=73

DMTITE architecture. We endeavored to maintain a
straightforward mapping between the elements of the
architecture and the design for several reasons. We be-
lieved that a close mapping would allow us to better
trace the effects of the architecture on the eventual
implementation, would provide us with a system that
was readily explainable and easily modified, and would
also allow us to readily identify elements of the architec-
ture and design that required changes if problems were
identified. The design description that we present in the
next few pages is current at the time of this writing and
reflects the effects of several iterations on both the archi-
tecture and design. We will first discuss the design of the
CODB component in this section and then conclude
with a discussion of the design for the DMTITE actor
software. All of the software is written in C11 for Sili-
con Graphics computers running IRIX 6.2.

The common object database design: The
CODB is crucial to the effective operation of DMTITE

because all incoming and outgoing DVE information is
maintained by and routed through it. In the design of
the CODB, the most important issues were ensuring
uncorrupted access to the data in the containers and
structuring the CODB and its containers to hold all of
the information. To simplify the data management pro-
cess, we decided to maintain a strict separation between
the containers that bring in data to an actor from the
CODB and those that send data from the actor to the
CODB. When information comes into an actor, the data
comes in a container that is read-only for the actor and
write-only for the CODB. When state information de-
parts an actor, it is placed in a container that is write-
only to the actor and read-only for the CODB.

In the design of the container class, we also differenti-
ate between persistent and nonpersistent data. Persistent
data is data tied to an entity that has a relatively long
lifespan in the DVE, but some components of the persis-
tent data may change over time. For example, the exis-
tence of an entity in the DVE is a relatively persistent

Figure 8. Data flow through the DMTITE architecture.

Stytz et al. 609

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-007.jpg&w=469&h=307

piece of data even though its velocity and location, and
hence its state, may be continuously changing. Nonper-
sistent data, on the other hand, is usually a singular
event, has a relatively brief lifespan, and is needed by
each DMTITE actor only once. For example, a weapon
detonation is a nonpersistent event, and, typically, once
an actor has processed the fact that a weapon detonated,
the actor no longer needs the information. For persistent
and nonpersistent data containers, the readers are moni-
tored. When all readers of a persistent data container
have accessed the container, the container is updated
with new information. In the case of a nonpersistent
data container, once all the readers have accessed the
container, the container’s contents are discarded, and
the container becomes available to hold information
about the next transient DVE event to occur.

A persistent container holds DVE entity state data,
data that specifies the type of container (entity, phenom-
enology, etc.), and four additional fields that specify
where in the container the information for the destina-
tion object is stored. The four additional fields provide
the actor with a map of the data in the container, so that
the location in the container of the palettes of informa-
tion and even individual actor state data are specified.
The CODB obtains the information concerning the
types of information each actor is interested in when the
actor is initialized. When an actor is initialized, it con-
nects to the CODB and specifies the information that it
requires and the types of information that it will supply
(which must be identical to the information specified in
the SOM). When the actor has information that is ready
to be transmitted, the actor loads its container and then
sends the information to the CODB by connecting to
the CODB and informing the CODB that its outbound
container is ready. As part of the data passed at this time,
the actor also informs the CODB which portions of the
actor’s container have changed since the last container
was sent by that actor. Conversely, when the CODB has
information ready for an actor, the CODB connects to
the actor and informs the actor that the CODB out-
bound container for the actor is ready and of those por-
tions of the container that have changed since the last
container was dispatched to the actor. The information
passed by the CODB includes data on the number of

entries in the container (which is fairly constant as this
value only changes when an entity that the actor has re-
quested information about enters or leaves the DVE),
the entity ID for each container entry, and the location
in the container of the entity’s data. Because the writer
controls the dispatch of the container to the reader, we
do not need to address mutual-exclusion issues in the
design. However, one issue addressed is of multiple
readers of the same container or sub-CODB. To ensure
that all entities that require data from the container or
sub-CODB have a chance to read, we attach a counter
to the container. The counter is incremented when an
entity finishes its read, and, when the counter value
matches the number of readers for the container or sub-
CODB, then the last entity to increment the counter
connects and signals that new data is required. Of
course, a semaphore protects the counter value.

The DMTITE Actor Software Design: Our ap-
proach to the design of the software to implement each
DMTITE actor was to develop a set of objects that mir-
ror the architecture in the major system components for
each actor, as shown in Figure 9. For each actor in the
DMTITE application, we have four main objects, the
physical representation component, the physical state
information interface, the dynamics component, and the
cognitive representation component. Each of these four
components is in turn composed of a variety of addi-
tional objects.

The physical representation component (PRC) has
two major subobjects, the physical model and the sensor
interface. The physical model component implements
the functionality of the physical component called for in
the architecture. The implementation of this object al-
lows us to encapsulate one or more physical models for
the operation of a sensor within a single package for the
actor, and each actor can have one or more physical
models. Because the information that is provided to the
physical model is encapsulated within a standardized
state message, we can interchange different physical
models to change sensor functionality in an actor. Also,
because we hide the physical model’s functionality, we
have been able to incorporate existing sensor models
into DMTITE with relative ease. The other component

610 PRESENCE: VOLUME 7, NUMBER 6

of the PRC is the sensor interface. The sensor interface is
responsible for extracting information from the incom-
ing container and providing each sensor model with the
information that it requires to function. The information
is transferred from the sensor model to the physical state
information interface using a state message. Once the
sensor-filtered information is in the physical state infor-
mation interface, the information is incorporated into
the knowledge base repository for use by the decision
engines.

Each DMTITE actor contains the four DEs shown in
Figure 9. Each of the four DEs contain a set of knowl-
edge base IDs and variables. The knowledge base IDs
identify the knowledge bases that the actor will use for
decision making. Each of the DEs can use a different
type of reasoning mechanism for its operation, the
choice of decision mechanism for an engine is com-
pletely independent of the type of decision-making
mechanisms used in the other three engines. The only
requirement that we impose upon the DEs is that their
decision-making systems be completely self-contained.
The knowledge bases are also constructed independently
of the DEs, one of the requirements that we impose on
the knowledge bases is that the information they provide
must be able to be presented to each of the DEs in a for-
mat that is useful to the reasoning mechanism used by
the particular DE being served. The AE has one unique
aspect missing from the other three engines, it contains a
combat skills (CS) model. An example of the use of a CS
model is contained in Figure 10.

In Figure 10, we present a rule for specifying how
anxiety and anger, the skill variables, combine to affect
reaction time. The rule is that if anxiety has a value that
exceeds 0.70, and if the value for anger exceeds 0.50,
then the CGA’s reaction time is increased. This rule can
be used for all levels of skill for a type of CGA because
the outcome of the evaluation of this rule for a CGA is
dependent upon two types of variables, trait variables
and effects variables, and their combined effect upon a
skill variable and not upon any data contained in the rule
itself. A trait variable value is constant for each modeled
skill used by the CGA throughout the entire time it op-
erates in the DVE. For example, the CGA in Figure 10
has little experience in combat but has an aggressive atti-

tude. Because of the lack of experience coupled with a
positive attitude toward being in combat, the anxiety
trait is set to a value of 0.15, which indicates that the
CGA will be more anxious than a veteran, but calmer
than most inexperienced pilots. The value for the anger
trait is set to 0.45 to reflect the CGA’s inexperience; we
would expect an inexperienced human in similar circum-
stances to be somewhat angry at the enemy. From time
to time during the course of its operation, the CGA will
encounter situations that can cause anxiety, anger, or
both to change. These dynamic changes to the CGA
combat skills are reflected in the effects variables. In the
situation reflected in Figure 10, the loss of the lead air-
craft while under attack by overwhelming force affects
both the anger and anxiety skill variables. Because of the
odds against the CGA surviving the encounter are in-
creased, anxiety should also increase. The value of 0.30
for the anxiety effects variable reflects this change. How-
ever, the situation also affects the CGA’s anger effects
value, which we set to 0.10 to reflect the loss of the lead
aircraft and pilot. To determine if the rule should fire,
the values for trait and effect are summed to yield an
instantaneous value for their associated skill variable. In
this circumstance, the anxiety skill variable has a value of
0.45 and the anger skill variable has a value of 0.55, so
the rule does not fire.

The combat skills model is used by the AE to refine
the outputs from the DEs to match the skill level desired
for the particular actor. The CS model provides us with a
means to depict aggressiveness, ability, capability to an-
ticipate enemy maneuvers, and ability to apply knowl-
edge as expressed by the doctrine and tactics contained
in the knowledge bases. In addition, the CS model al-
lows us to portray a particular actor’s promptness in
obeying orders, the actor’s morale and anxiety about its
mission, and the simulated eyesight acuity for the actor.
When required, we can establish a new skill level by
specifying the appropriate parameters for the CS model.
The skill model is used in conjunction with the knowl-
edge bases needed by the AE decision-making mecha-
nisms to select outputs from those provided by the other
DEs so that the actions performed by the actor match its
desired skill level. Within the AE, the CS model can be
rule-based, case-based or fuzzy-set based; in this regard

Stytz et al. 611

Figure 9. Software design for a DMTITE computer-generated actor.

612 PRESENCE: VOLUME 7, NUMBER 6

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-008.jpg&w=468&h=591

the AE operates like all the other DEs in that it does not
know how the information is represented in its knowl-
edge bases. By isolating the skill-level properties for the
actor within a single component of the CRC, we can
more easily specify a skill level than if we distributed this
aspect of the actor’s decision making capability among
all four of the decision engines.

The knowledge base repository, portrayed in Figure
11, is the final component of the DEs design. The
knowledge base repository holds all of the knowledge
required by an actor. The components of an actor’s
knowledge base are specified when it is configured, and
each of the decision engines is thereby able to access the
repository when required by using these IDs.

In Figure 11, the expression class establishes the ac-
cess methods to an expression. The access methods are
independent of the reasoning strategy used by a decision
engine or the type of knowledge expression contained,
such as case-based, rule-based, or fuzzy logic. As shown
in the figure, within the knowledge base repository are a
number of knowledge bases. A DMTITE knowledge
base is composed of a set of policies. A policy is a self-
contained unit of knowledge, for example, a checklist for
dealing with in-flight emergencies. Policies are atomic
and nonoverlapping; they do not rely upon knowledge
contained in other knowledge bases within DMTITE.
This approach to knowledge partitioning allows us to
expand the contents of a knowledge base by adding poli-

cies to a knowledge base or by extending the contents of
an individual policy. Policies and knowledge bases can be
shared among actors in DMTITE. A policy, as shown in
the diagram, can be either a basic policy (currently sup-
ports case-based or rule-based reasoning) or a fuzzy
policy (one that supports fuzzy logic).

In DMTITE, because the knowledge implementation
is separated from the reasoning engine that acts upon
that knowledge, the DEs need to know only which
knowledge bases to access for information, which is pro-
vided in knowledge base IDs, and the manner for ex-
tracting knowledge from the particular knowledge base,
which is provided in the policy. This separation of
knowledge and reasoning engine allows us to experi-
ment with different types of knowledge representations
and decision mechanisms without changing the software
design.

The fourth and final component of every DMTITE
actor is its dynamics component. The dynamics compo-
nent holds the dynamics model for the actor and is used
to move the actor throughout the DVE in a realistic and
accurate manner. Each actor has at least one model and
may have several. If the actor has several dynamics mod-
els, we generally attempt to construct them so that we
have several different levels of dynamics fidelity to
choose from. In this way, when an actor must move in a
highly accurate manner for a particular scenario, we can
employ a high-fidelity model, but, in other circum-

Figure 10. Combat psychology model example for an aggressive CGA that is inexperienced in combat reacting to the shootdown

of its lead while being attacked by overwhelming force.

Stytz et al. 613

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-009.jpg&w=441&h=146

stances when dynamics is not as important and we need
to conserve computational power, we can employ a
lower-fidelity model that consumes fewer CPU re-
sources.

8 Summary and Future Work

In this paper we presented an architectural solution
to the requirements for a distributed mission training
threat system. The architectural solution is based on the
CODB architecture and permits the use of REEP, en-
sures the isolation of reasoning components from
knowledge-base components, permits multiple threats

to be instantiated within a single DMTITE host, and
restricts available information to a model of the informa-
tion available in the real world.

Several issues remain to be addressed in DMTITE and
in CGAs as a field. One of the most pressing issues is the
cost of assembling a knowledge base for an actor. As
might be expected, the cost of the knowledge base in-
creases with the complexity of an actor’s desired behav-
ior, so that when an actor must faithfully emulate an air-
craft the amount of knowledge required is quite
overwhelming. One step we took in DMTITE to ame-
liorate this problem was incorporating the capacity to
reuse knowledge bases across actor types. Our goal is
that we will have to assemble and maintain a particular

Figure 11. The design of the DMTITE actor knowledge base repository.

614 PRESENCE: VOLUME 7, NUMBER 6

http://www.mitpressjournals.org/action/showImage?doi=10.1162/105474698565956&iName=master.img-010.jpg&w=347&h=357

knowledge base only once. However, this solution is not
a final one, and we do not foresee a solution until better
models of human behavior are developed. At this stage
of CGA development, we have no model to guide us in
the selection of information to be included in a knowl-
edge base, and we are generally forced to rely upon sub-
ject-matter experts to furnish guidance. However, this is
a notoriously slow procedure.

Another pressing issue is the need to be able to vali-
date the behaviors of a CGA without examining all of
the possible DVE states to ensure that the response of
the CGA is correct. We do not see a quick solution to
this problem, but it may lie in being able to be addressed
by reusing knowledge bases, validating behaviors against
standardized scenarios, and by developing better behav-
ioral models. In any regard, the development of better
behavioral models is an important problem because it is
the only tool we have to guide us in the development of
CGA capabilities and in populating knowledge bases.

Another question that remains unanswered is the
number of actors that should be serviced by a CODB or
sub-CODB. As the number of actors per CODB or sub-
CODB increases, the system saves time in moving data
to the actor, but the amount of time required for all the
actors to retrieve their data increases. As the number of
actors per sub-CODB decreases, the servicing time de-
creases, but the proportional amount of time required to
move data to a sub-CODB or servicing container in-
creases. We suspect that the number of actors serviced
will depend upon the acceptable delay in data arrival that
the actors can tolerate, the number of actors per CPU,
and the amount of data that must be loaded into the
container.

The final issue we believe should be addressed is the
challenge of skill levels. As we currently conceive of the
problem, skill level and fidelity are separable in a system,
but we have no evidence to support this conjecture. An-
other component of this issue is that of properly defining
the skill level for an actor in a way that a computer can
use to modify the output from a decision process. We
have taken a first step in this direction with the use of a
combat skill model, but this model is by no means a
complete picture of the skills that an operator brings to

bear when using a system. The combat skill model ad-
dresses the psychological aspects of the operator, which
are those issues that relate to aggressiveness and willing-
ness to engage in combat and a few physical attributes,
such as eyesight acuity. However, the model needs to be
expanded to account for physical factors, such as toler-
ance of G forces, exhaustion, and physical coordination,
as well as additional psychological factors such as mental
alertness, creativity, and the ability to improvise.

References

Blau, B., Hughes, C. E., Moshell, J. M., & Lisle, C. (1992).
Networked Virtual Environments. Proceedings of the 1992
Symposium on Interactive 3D Graphics, 157–160.

Blau, B., Moshell, J. M., & McDonald, B. (1993). The DIS
(Distributed Interactive Simulation) Protocols and Their
Application to Virtual Environments. Proceedings of the
Meckler Virtual Reality ’93 Conference, 19–21.

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar, J. M. F.,
& Ceranowicz, A. Z. (1993). ModSAF Behavior Simulation
and Control. Proceedings of the Third Conference on Com-
puter-Generated Forces and Behavioral Representation, 347–
356.

Calvin, James O., & Weatherly, Richard. An Introduction to
the High-Level Architecture (HLA) Run-time Infrastruc-
ture (RTI). 15th Workshop on Standards for the Interoperabil-
ity of Distributed Simulations. 705–715.

Dahman, Judith, Ponikvar, Donald R., and Lutz, Robert.
HLA Federation Development and Execution Process. 15th
Workshop on Standards for the Interoperability of Distributed
Simulations, 327–335.

Edwards, M., & Stytz, M. R. (1996). The Fuzzy Wingman:
An Intelligent Companion for DIS-Compatible Flight Simu-
lators. The SPIE/SCS Joint 1996 SMC Simulation Multicon-
ference: 1996 Military, Government, & Aerospace Simulation
Conference, 28(3), 77–82.

Fujimoto, Richard M., & Weatherly, Richard M. HLA Time
Management and DIS. 15th Workshop on Standards for the
Interoperability of Distributed Simulations, pp 615–628.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR:
An Architecture for General Intelligence. Artificial Intelli-
gence, 33, 1–64.

Stytz et al. 615

Laird, J. E., et al. (1995). Simulated Intelligent Forces for Air:
The SOAR/IFOR Project 1995. Proceedings of the Fifth
Conference on Computer Generated Forces and Behavioral
Representation, 27–36.

Miller, Duncan C. The DOD High-Level Architecture and
theNext Generation of DIS. 15th Workshop on Standards for
the Interoperability of Distributed Simulations, 799–806.

Stark, Thomas S., Weatherly, Richard, & Wilson, Annette. The
High-Level Architecture (HLA) Interface Specification and
Applications Programmer’s Interface. 15th Workshop on
Standards for the Interoperability of Distributed Simulations,
851–860.

Stytz, M. R. (1996). Distributed Virtual Environments. IEEE
Computer Graphics and Applications, 16(3), 19–31.

Stytz, M. R., Banks, S. B., & Santos, E. (1996). Requirements
for Intelligent Aircraft Entities in Distributed Environments.
18th Interservice/Industry Training Systems and Education
Conference (publication on CD-ROM).

Stytz, Martin R., Adams, T., Garcia, B., Sheasby, S. M., &
Zurita, B. (1997). Rapid Prototyping for Distributed Virtual
Environments. IEEE Software, 14(5), 83–92.

Tambe, M., Johnson, W. L., Jones, R. M., Koss, F., Laird,
J. E., Rosenbloom, P. S., & Schwamb, K. (1995). Intelligent
Agents for Interactive Simulation Environments. AI Maga-
zine, 16(1), 15–40.

616 PRESENCE: VOLUME 7, NUMBER 6

